Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins Article Langmuir, 32 (22), p. 5480–5490, 2016, ISSN: 15205827. Résumé | Liens | BibTeX @article{Forato2016,
title = {Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins},
author = {Florian Forato and Hao Liu and Roland Benoit and Franck Fayon and Cathy Charlier and Amina Fateh and Alain Defontaine and Charles Tellier and Daniel R Talham and Clémence Queffélec and Bruno Bujoli},
doi = {10.1021/acs.langmuir.6b01020},
issn = {15205827},
year = {2016},
date = {2016-01-01},
journal = {Langmuir},
volume = {32},
number = {22},
pages = {5480--5490},
abstract = {Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr4+, afforded better immobilization of the peptides and proteins and efficient capture of their targets.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr4+, afforded better immobilization of the peptides and proteins and efficient capture of their targets. |
Goux, Marine; Fateh, Amina; Defontaine, Alain; Cinier, Mathieu; Tellier, Charles In vivo phosphorylation of a peptide tag for protein purification Article Biotechnology Letters, 38 (5), p. 767–772, 2016, ISSN: 1573-6776. Résumé | Liens | BibTeX @article{Goux2016,
title = {In vivo phosphorylation of a peptide tag for protein purification},
author = {Marine Goux and Amina Fateh and Alain Defontaine and Mathieu Cinier and Charles Tellier},
url = {https://doi.org/10.1007/s10529-016-2040-4},
doi = {10.1007/s10529-016-2040-4},
issn = {1573-6776},
year = {2016},
date = {2016-01-01},
journal = {Biotechnology Letters},
volume = {38},
number = {5},
pages = {767--772},
abstract = {To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag. |